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Problem statement (1)

T = (V , E, ρ) random rooted tree (in the graph theoretic sense), locally finite.
For p ∈ (0, 1), define the random tree Cp(T) by contracting each edge in T
with probability 1− p. Contracting an edge means removing it and identifying
its head and tail.

Equivalent definition: V ′ = set containing each vertex with probability p (plus
root). Construct tree on V ′ by preserving ancestral relationships.

Note: Resulting tree need not be locally finite (if the critical point pc of edge
percolation on the tree satisfies pc < 1− p)
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Problem statement (2)

Definition

We say that T is p-self-similar if T and Cp(T) are equal in law (up to graph
isomorphisms fixing the root).

Problem

Characterize/construct all p-self-similar trees.
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Related works

Large body of literature concerning dynamics on random trees:

Growth (Rémy (1985), Aldous (1991), Duquesne and Winkel (2007)...)

Percolation on leaves (Aldous and Pitman (1998),...)

Subtree pruning and regrafting (Evans and Winter (2006),...)

Splitting/Fragmentation (Miermont (2005), Marchal (2008),...)

But here for us more relevant: Janson (2011): exchangeable random partially
ordered sets.
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Trivialities

Problem

Characterize/construct all p-self-similar trees.

Necessary conditions for T to be self-similar:

T is infinite

Finite number of infinite rays, separating at root.

Trivial examples of p-self-similar trees: N, N t . . . t N.

Less trivial example

N, attach to each vertex bouquets of edges, numbers are iid geometrically
distributed
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Main result (informal statement)

Theorem S

Any p-self-similar tree T can be obtained by Poissonian sampling from
a real, rooted, measured, random tree, which itself satisfies a certain
natural scale invariance property. Conversely, every such real tree
defines a p-self-similar tree T through Poissonian sampling.

The real tree in the above theorem can be seen as a certain scaling limit of
the discrete tree T .
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WARNING!
Some notation follows...
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A convention

For a metric space X , defineM1(X) the space of probability measures on X ,
endowed with Prokhorov’s topology. In what follows, we will often study
operations on laws of random variables (such as the law of a random tree).
We will often identify a random variable with its law and write for example
T ∈M1(T), for T the space of locally finite rooted trees.

We also use without mention that a continuous map f : X → Y or
f : X →M1(Y ) can be canonically extended to a continuous map
f :M1(X)→M1(Y ).
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Real trees

A real tree is a geodesic metric space (V, d) “without cycles”. There is a
natural definition of length/Lebesgue measure `T .

Definition

T: space of (equivalence classes of) measured, rooted, real, locally
compact trees T = (V, d, ρ, µ) where µ is a locally finite measure,

Te ⊂ T the subspace of trees with a finite number of ends,

T1 ⊂ T the subspace where µ is a probability measure,

T` ⊂ T, T`e ⊂ Te and T`1 ⊂ T1 the subspaces where µ ≥ `T .

We endow these trees with the Gromov–Hausdor�–Prokhorov topology,
which makes T topologically complete (ADH13).

Note: in particular, `T is Radon/locally finite for T ∈ T`. There are important

examples of real trees where this is not the case, e.g. Aldous’ (Brownian) continuum

random tree.
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Rescaling and discretization of a real tree

We define two operations on the spaces T` and T`e , respectively: rescaling
and discretization/Poissonian sampling.
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Rescaling and discretization of a real tree

We define two operations on the spaces T` and T`e , respectively: rescaling
and discretization/Poissonian sampling.

Rescaling: For T = (V, d, ρ, µ) ∈ T` and p > 0, we define the rescaled tree
Sp(T ) by

Sp(T ) = (V, p · d, ρ, p · µ).

Definition

We say a (random) tree T taking values in T` is p-self-similar, p ∈ (0, 1), if T
and Sp(T ) are equal in law (up to measure-preserving isometries fixing the
root).
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Rescaling and discretization of a real tree

We define two operations on the spaces T` and T`e , respectively: rescaling
and discretization/Poissonian sampling.

Discretization: For T = (V, d, ρ, µ) ∈ T`e , we define the discretized tree
D(T ) as follows: Sample two random (multi-)sets of vertices V0,V1 ⊂ V
according to independent Poisson processes with intensity `T and µ − `T ,
respectively. Then D(T ) is the discrete tree with the following properties:

The set of vertices is V = {ρ} ∪ V0 ∪ V1,
For two vertices v,w ∈ V ,

v �D(T ) w ⇐⇒ v �T w and v ∈ V0 ∪ {ρ}.

(v �T w if v lies on geodesic between ρ and w in T )
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Rescaling and discretization of a real tree

We define two operations on the spaces T` and T`e , respectively: rescaling
and discretization/Poissonian sampling.

Commutation relation

For every p ∈ (0, 1),
D ◦ Sp = Cp ◦ D.
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Main result

Theorem S

There exists a one-to-one correspondence between

random discrete p-self-similar trees T and

random real p-self-similar trees T taking values in T`e ,

given by
T = D(T ).
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Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar process.
Ingredients:

1 A random real tree T0 taking values in T`1 .

2 A real-valued process (X(t); t ≥ 0), which is increasing, pure-jump and
satisfies

(pX(t); t ≥ 0)
law
= (X(pt); t ≥ 0).

Construct a p-self-similar real tree as follows:

Start with an infinite ray (the spine).

For each jump time t of the process X , take an independent copy T (t)
0

of T0, and attach its rescaling SX(t)−X(t−)(T
(t)
0 ) to the spine at distance

t from the root.
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Translation invariant trees

Question

Can one construct examples of one-ended p-self-similar trees
T = (V, d, ρ, µ) which are translation invariant (in law) along the spine?

Denote by vt the spine vertex at distance t from the root and by V≤t the
subset of vertices which are not descendants of vt . Define the mass process
(X(t); t ≥ 0) by X(t) = µ(V≤t). Then (X(t); t ≥ 0) is a real-valued,
increasing, stochastic process with stationary increments satisfying,

(pX(t); t ≥ 0)
law
= (X(pt); t ≥ 0).

Theorem (basically Vervaat (1985))

Let (X(t); t ≥ 0) be a process as above. Then, almost surely, for every t ≥ 0,
X(t) = X(1)t.
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Translation invariant trees (2)

Theorem (basically Vervaat (1985))

Almost surely, for every t ≥ 0, X(t) = X(1)t.

Corollary

A random, one-ended tree T taking values in T`e , which is translation
invariant along the spine, is p-self-similar if and only if

T = (R+, dEucl, 0, Y · `), Y ≥ 1 a random variable.

Corollary

A random, one-ended discrete tree T , which is translation invariant along the
spine, is p-self-similar if and only if there exists a (random) P ∈ (0, 1], such
that each subtree of the spine is a tree of height 1 with a Geo(P) number of
edges (independently for each vertex on the spine). (P = 1/Y ).

Pascal Maillard On trees invariant under edge contraction 14 / 25



Translation invariant trees (2)

Theorem (basically Vervaat (1985))

Almost surely, for every t ≥ 0, X(t) = X(1)t.

Corollary

A random, one-ended tree T taking values in T`e , which is translation
invariant along the spine, is p-self-similar if and only if

T = (R+, dEucl, 0, Y · `), Y ≥ 1 a random variable.

Corollary

A random, one-ended discrete tree T , which is translation invariant along the
spine, is p-self-similar if and only if there exists a (random) P ∈ (0, 1], such
that each subtree of the spine is a tree of height 1 with a Geo(P) number of
edges (independently for each vertex on the spine). (P = 1/Y ).

Pascal Maillard On trees invariant under edge contraction 14 / 25



Translation invariant trees (2)

Theorem (basically Vervaat (1985))

Almost surely, for every t ≥ 0, X(t) = X(1)t.

Corollary

A random, one-ended tree T taking values in T`e , which is translation
invariant along the spine, is p-self-similar if and only if

T = (R+, dEucl, 0, Y · `), Y ≥ 1 a random variable.

Corollary

A random, one-ended discrete tree T , which is translation invariant along the
spine, is p-self-similar if and only if there exists a (random) P ∈ (0, 1], such
that each subtree of the spine is a tree of height 1 with a Geo(P) number of
edges (independently for each vertex on the spine). (P = 1/Y ).

Pascal Maillard On trees invariant under edge contraction 14 / 25



A generalization

To get more interesting examples, generalize the contraction and rescaling
operations Cp and Sp: Let p, q ∈ (0, 1).

Cp,q : Defined as Cp, but vertices on the spine are retained with
probability q.

Sp,q : Defined as Sp, but distances on the spine are rescaled by q
instead of p.

Definition

A random (discrete) T is (p, q)-self-similar if T
law
= Cp,q(T).

A random (real) tree T is (p, q)-self-similar if T law
= Sp,q(T ).

Theorem S holds with p-self-similar replaced by (p, q)-self-similar.
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The iid case

In the translation invariant case, many examples can be constructed when
q > p. Let us consider the case where the subtrees along the spine are iid.
Write the (discrete) tree T as T = (T 0, T 1, . . .), where T n is the subtree of
the n-th vertex on the spine. We construct a (p, q)-self-similar tree where
T 0, T 1, . . . are iid. The ingredients are the following:

(T n0 )n≥0: an iid sequence of trees in T`1
ν: a quasi-stationary distribution with eigenvalue q of the
Galton–Watson process (Zn; n ≥ 0) with o�spring distribution
p0 = 1− p, p1 = p. That is, ν satisfies

∀n ∈ N : Pν(Zn ∈ · | Zn > 0) = ν and Pν(Z1 > 0) = q.

Maillard (2015): Characterization of these quasi-stationary distributions.

A constant c ∈ (0, 1].
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The iid case (2)

(T n0 )n≥0: an iid sequence of trees in T`
1

ν: a quasi-stationary distribution with eigenvalue q of the GW process with
o�spring distribution p0 = 1− p, p1 = p.

c ∈ (0, 1].

Construct tree T = (T 0, T 1, . . .), where T 0, T 1, . . . are iid according to the
following law:

T 0 is the union of a Geo(c)-distributed number of iid trees T ′, where

T ′
law
= D(T0,N ), N ∼ ν.

Here, D(T0,m) is the tree D(T0) cond’ed on having m vertices (plus root).

“Theorem”: This example (basically) covers all cases.
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Proof of Theorem S

One direction is obvious: If T is a p-self-similar random R-tree, then by the
commutation relation,

Cp(D(T )) = D(Sp(T )) = D(T ),

whence the discrete tree D(T ) is p-self-similar as well. For the converse
direction, introduce some more notation:

T: The space of locally finite discrete rooted trees (endowed with
topology of local convergence).

Te ⊂ T: The subspace of trees with a finite number of ends.

ι : T→ T`: embedding of a discrete tree into T` where each edge gets
edge length 1 and µ = length measure.

M1(X) (for a metric space X ): the space of probability measures on X ,
endowed with the Prokhorov topology.
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Proof of Theorem S (2)

T: The space of locally finite discrete rooted trees (endowed with topology of
local convergence).

Te ⊂ T: The subspace of trees with a finite number of ends.

ι : T→ T`: embedding of a discrete tree into T` where each edge gets unit
length and µ = length measure.

M1(X) (for a metric space X ): the space of probability measures on X ,
endowed with the Prokhorov topology.

Let T be a p-self-similar random discrete tree, i.e. T
law
= Cp(T). Then T ∈ Te

almost surely. We show

1 D(Spn(ι(T)))→ T as n→∞.

2 The sequence of laws of Spn(ι(T)) is precompact inM1(T
`
e).

3 D :M1(T
`
e)→M1(Te) is continuous and injective.

This implies the theorem.
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Proof of Theorem S (3)

1 D(Spn(ι(T)))→ T as n→∞. Construct coupling between the trees T
and D(Spn(ι(T))), or rather, suitably truncated versions of them

2 The sequence of laws of Spn(ι(T)) is precompact inM1(T
`
e). Derive

precompactness criterion inM1(T
`
e) andM1(Te) (Note: T`e and Te are

not Polish spaces): For 0 ≤ r ≤ R and T ∈ T`e , define Nr,R(T ) to be the
number of vertices at distance r of the root having a descendant at
distance R of the root. Then:

A sequence of random trees T1, T2, . . . ∈M1(Te) is precompact inM1(Te)
if and only if it is precompact inM1(T) and for every r ≥ 0 there exist
R = R(r) and n0 = n0(r), such that

the family of random variables (Nr,R(r)(Tn))r∈N,n≥n0(r) is tight.

Argue by contradiction using (technical) estimates.
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Proof of Theorem S (3)

Last point to show: D :M1(T
`
e)→M1(Te) is continuous and injective.

Through (non-trivial, but technical) truncation arguments, reduce to showing
that D is continuous and injective onM1(T

`
1 ). In fact, we have

Theorem T

The map D is a homeomorphism betweenM1(T
`
e) and D(M1(T

`
e)).

In order to prove Theorem T, we will use two other representations of a
random tree T ∈ M1(T

`
1 ):

Distance matrix: Let T = (V, d, ρ, µ) a random tree taking values in T`1 . Let
X0 = ρ and X1,X2, . . . be iid according to µ. Then the law of

(DT (i, j))i,j∈N = (d(Xi,Xj))i,j∈N,

also denoted by DT , is called the distance matrix distribution of the tree T .

Theorem (Gromov, Greven–Pfa�elhuber–Winter)

The map (T 7→ DT ) is a homeomorphism betweenM1(T
`
1 ) and its image.
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`
1 ). In fact, we have

Theorem T
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`
e)).
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Proof of Theorem S (4)

Exchangeable partial order: Let T ∈ M1(T
`
1 ). Define a random partial order

on {1, . . . , n} as follows:
Condition the tree D(T ) on having n non-root vertices; label them
uniformly at random by 1, . . . , n.

The ancestral relation of the resulting tree defines a random partial
order on {1, . . . , n}.

By design, the sequence of random partial order thus obtained is compatible
and thus extends to a random partial order CT on N; this random partial
order is moreover exchangeable by design.

Lemma

The maps D and C: T 7→CT induce the same topology onM1(T
`
1 ).
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Proof of Theorem T

Goal: Show that C is a homeomorphism betweenM1(T
`
1 ) and its image.

SinceM1(T
`
1 ) is compact, enough to show that it is continuous and injective.

Injectivity of C: Can reconstruct distance matrix DT from CT :

DT (i, j) = lim
n→∞

1

n

n∑
k=1,k 6∈{i,j}

1kCT i, k 6CT j or kCT j, k 6CT i,

Continuity of C: Enough to show continuity on T`1 (deterministic trees).
Show in fact that the map T 7→ (DT ,CT ) is continuous on T`1 . For this,
consider expectation of test functions of the form

f (D,C) = C
n∏

i,j=0

D(i, j)βij
L∏
l=1

1alCbl ,

where C ∈ R, n ∈ N, βij ∈ N, L ≥ 0 and al , bl ∈ {1, . . . , n}.
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Proof of Theorem T (2)

f (D,C) = C
n∏

i,j=0

D(i, j)βij
L∏
l=1

1alCbl ,

where C ∈ R, n ∈ N, βij ∈ N, L ≥ 0 and al , bl ∈ {1, . . . , n}. Show that
E[f (DT ,CT )] is continuous in T . Proof by induction over L.
L = 0: Follows from Gromov/Greven–Pfa�elhuber–Winter.
L − 1→ L: Can assume that there exists l0 ∈ {1, . . . , L} such that
al0 6∈ {bl : l = 1, . . . , L} (otherwise there exists a cycle
al1 C bl′1 C al2 C · · · C bl′k C al1 and thus f ≡ 0. Let Λ be the set of those
l ∈ {1, . . . , L} for which the indicator 1al0Cbl appears in f . Then can prove
that

E
[∏
l∈Λ

1al0Cbl

∣∣∣D, (1alCbl , l 6∈ Λ)
]

is a polynomial in (D(i, j))ni,j=1. This allows to complete the induction.
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Conclusion

Theorem S permits to characterize all (p, q)-self-similar trees in terms
of limiting real trees satisfying a simple (multiplicative) self-similarity
property.

Have constructed several classes of examples of such trees.

The limiting real trees have finite length measure. As a consequence, the
(p, q)-self-similar trees are rather elongated, very di�erent from
Galton–Watson trees (for example).

Usually in the literature, operations on trees act on the leaves of the
trees or on whole subtrees, not on single internal vertices.

Theorem T gives another characterization of the GHP topology on the
space T`1 .

Proof of Theorem T is yet another example of the use of exchangeability
in studying continuum limits of discrete structures.
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