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Problem statement (1)

T = (V,E, p) random rooted tree (in the graph theoretic sense), locally finite.
For p € (0,1), define the random tree C,(T) by contracting each edge in T
with probability 1 — p. Contracting an edge means removing it and identifying
its head and tail.

Equivalent definition: V' = set containing each vertex with probability p (plus
root). Construct tree on V' by preserving ancestral relationships.

Note: Resulting tree need not be locally finite (if the critical point p. of edge
percolation on the tree satisfies p. <1— p)
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isomorphisms fixing the root).

We say that T is p-self-similar if T and C,(T) are equal in law (up to graph
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Problem statement (2)

Definition

We say that T is p-self-similar if T and C,(T) are equal in law (up to graph
isomorphisms fixing the root).

Characterize/construct all p-self-similar trees. I
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Related works

Large body of literature concerning dynamics on random trees:
o Growth (Rémy (1985), Aldous (1991), Duquesne and Winkel (2007)...)
@ Percolation on leaves (Aldous and Pitman (1998),...)

@ Subtree pruning and regrafting (Evans and Winter (2006),...)
Splitting/Fragmentation (Miermont (2005), Marchal (2008),...)
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Related works

Large body of literature concerning dynamics on random trees:
o Growth (Rémy (1985), Aldous (1991), Duquesne and Winkel (2007)...)
@ Percolation on leaves (Aldous and Pitman (1998),...)
@ Subtree pruning and regrafting (Evans and Winter (2006),...)
e Splitting/Fragmentation (Miermont (2005), Marchal (2008),...)

But here for us more relevant: Janson (2011): exchangeable random partially
ordered sets.
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Trivialities

Characterize/construct all p-self-similar trees. l
Necessary conditions for T to be self-similar:
e T is infinite
@ Finite number of infinite rays, separating at root
Trivial examples of p-self-similar trees: N, NU ... UN
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Trivialities

o T is infinite

Characterize/construct all p-self-similar trees. l
Necessary conditions for T to be self-similar:

@ Finite number of infinite rays, separating at root.
Trivial examples of p-self-similar trees: N, NU ... UN.

N, attach to each vertex bouquets of edges, numbers are iid geometrically
distributed
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Main result (informal statement)

Theorem S

Any p-self-similar tree T can be obtained by Poissonian sampling from
a real, rooted, measured, random tree, which itself satisfies a certain
natural scale invariance property. Conversely, every such real tree
defines a p-self-similar tree T through Poissonian sampling.

The real tree in the above theorem can be seen as a certain scaling limit of
the discrete tree T.
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WARNING!
Some notation follows...

Pascal Maillard On trees invariant under edge contraction 7125



A convention

For a metric space X, define M;(X) the space of probability measures on X,
endowed with Prokhorov’s topology. In what follows, we will often study
operations on laws of random variables (such as the law of a random tree).
We will often identify a random variable with its law and write for example
T € M;(T), for T the space of locally finite rooted trees.

We also use without mention that a continuous map f : X — Y or
f: X — M(Y) can be canonically extended to a continuous map

f:M(X) = M(Y).
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Real trees

A real tree is a geodesic metric space (V, d) “without cycles”. There is a
natural definition of length/Lebesgue measure £7.
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Real trees

A real tree is a geodesic metric space (V, d) “without cycles”. There is a
natural definition of length/Lebesgue measure (7.
Definition

@ T: space of (equivalence classes of) measured, rooted, real, locally
compact trees T = (V,d, p, ) where 1 is a locally finite measure,

e T, C ¥ the subspace of trees with a finite number of ends,
@ T C ¥ the subspace where p is a probability measure,
o ¥ %, ‘Eﬁ Cc %, and Tf C T, the subspaces where p > (7.

We endow these trees with the Gromov-Hausdorff-Prokhorov topology,
which makes ¥ topologically complete (ADHI3).

Note: in particular, /7 is Radon/locally finite for 7~ € T*. There are important

examples of real trees where this is not the case, e.g. Aldous’ (Brownian) continuum
random tree.
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Rescaling and discretization of a real tree

We define two operations on the spaces T¢ and T, respectively: rescaling
and discretization/Poissonian sampling.
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Rescaling and discretization of a real tree

We define two operations on the spaces T¢ and T, respectively: rescaling
and discretization/Poissonian sampling.

Rescaling: For T = (V. d, p, 1) € T¢ and p > 0, we define the rescaled tree
Sy(T) by
Sp(T) =V, p-d, p,p-p).

Definition

We say a (random) tree 7 taking values in T is p-self-similar, p € (0,1), if T
and S,(7) are equal in law (up to measure-preserving isometries fixing the
root).

Pascal Maillard On trees invariant under edge contraction 10 / 25



Rescaling and discretization of a real tree

We define two operations on the spaces T¢ and T, respectively: rescaling
and discretization/Poissonian sampling.

Discretization: For T = (V,d,p,u) € T%, we define the discretized tree
D(T) as follows: Sample two random (multi-)sets of vertices Vo, Vi C V
according to independent Poisson processes with intensity {7 and u — £,
respectively. Then D(7) is the discrete tree with the following properties:

@ The set of vertices is V = {p} U Vp U W,

@ For two vertices v, w € V,

v3p w <= vy wandve VyU{p}

(v <7 wif v lies on geodesic between p and w in T)
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Rescaling and discretization of a real tree

and discretization/Poissonian sampling.

We define two operations on the spaces T¢ and T, respectively: rescaling

For every p € (0,1),

DoS,=C,0D.
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Main result

Theorem S
There exists a one-to-one correspondence between
@ random discrete p-self-similar trees T and
o random real p-self-similar trees 7 taking values in ¢,
given by
T=D(T).

Pascal Maillard On trees invariant under edge contraction n/25



Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar process.
Ingredients:

© A random real tree 7y taking values in T}.

@ A real-valued process (X(t);t > 0), which is increasing, pure-jump and
satisfies
(pX(1); t > 0) 2 (X(pt); t > 0).
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Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar process
Ingredients:

© A random real tree 7y taking values in T}.

@ A real-valued process (X(t);t > 0), which is increasing, pure-jump and
satisfies
(PX(1): 2 0) 2 (X(pt): 1 > 0).
Construct a p-self-similar real tree as follows:

@ Start with an infinite ray (the spine).

@ For each jump time t of the process X, take an independent copy 76(0
of Ty, and attach its rescaling Sx(,)_x

(76 ) to the spine at distance
t from the root.
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees

T = (V,d, p, u) which are translation invariant (in law) along the spine?
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees
T = (V,d, p, u) which are translation invariant (in law) along the spine?

Denote by v; the spine vertex at distance ¢ from the root and by V<! the
subset of vertices which are not descendants of v;. Define the mass process
(X(t);t > 0) by X(t) = u(V="). Then (X(¢);¢ > 0) is a real-valued,
increasing, stochastic process with stationary increments satisfying,

(pX(1);t > 0) 2 (X(pt); ¢ > 0).
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees
T = (V,d, p, u) which are translation invariant (in law) along the spine?

Denote by v; the spine vertex at distance ¢ from the root and by V<! the
subset of vertices which are not descendants of v;. Define the mass process

(X(t);t > 0) by X(t) = u(V="). Then (X(¢);¢ > 0) is a real-valued,
increasing, stochastic process with stationary increments satisfying,

(pX(1);t > 0) 2 (X(pt); ¢ > 0).

Theorem (basically Vervaat (1985))

Let (X(t);t > 0) be a process as above. Then, almost surely, for every t > 0,
X(t) = X(Q)t.
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Almost surely, for every t > 0, X(t) = X(1)t
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Translation invariant trees (2)

Theorem (basically Vervaat (1985))
Almost surely, for every t > 0, X(t) = X(1)t.

Corollary

A random, one-ended tree 7 taking values in ‘Zﬁ, which is translation
invariant along the spine, is p-self-similar if and only if

T = (Ry,dpye,0,Y-£), Y >1arandom variable.
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Translation invariant trees (2)

Theorem (basically Vervaat (1985))
Almost surely, for every t > 0, X(t) = X(1)t.

Corollary
A random, one-ended tree 7 taking values in ‘Zﬁ, which is translation

invariant along the spine, is p-self-similar if and only if

T = (R4, dpyq,0,Y - ¢), Y >1arandom variable.

Corollary

A random, one-ended discrete tree T, which is translation invariant along the
spine, is p-self-similar if and only if there exists a (random) P € (0,1], such
that each subtree of the spine is a tree of height 1 with a Geo(P) number of
edges (independently for each vertex on the spine). (P =1/Y).
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A generalization

To get more interesting examples, generalize the contraction and rescaling
operations C, and S,: Let p, g € (0,1).
e Cp 4 Defined as C,, but vertices on the spine are retained with
probability g.

e S, Defined as S, but distances on the spine are rescaled by ¢
instead of p.
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A generalization

To get more interesting examples, generalize the contraction and rescaling
operations C, and S,: Let p, g € (0,1).
e Cp 4 Defined as C,, but vertices on the spine are retained with
probability g.

e S, Defined as S, but distances on the spine are rescaled by ¢
instead of p.

Definition

A random (discrete) T is (p, q)-self-similar if T i Cpg(T).
A random (real) tree T is (p, q)-self-similar if T o Sp.q(T).
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A generalization

To get more interesting examples, generalize the contraction and rescaling
operations C, and S,: Let p, g € (0,1).
e Cp 4 Defined as C,, but vertices on the spine are retained with
probability g.

e S, Defined as S, but distances on the spine are rescaled by ¢
instead of p.

Definition

A random (discrete) T is (p, q)-self-similar if T i Cpg(T).
A random (real) tree T is (p, q)-self-similar if T o Sp.q(T).

Theorem S holds with p-self-similar replaced by (p, q)-self-similar.
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The iid case

In the translation invariant case, many examples can be constructed when

q > p. Let us consider the case where the subtrees along the spine are iid.
Write the (discrete) tree T as T = (TO, T, .. .), where T" is the subtree of

the n-th vertex on the spine. We construct a (p, g)-self-similar tree where

T T', ... are iid. The ingredients are the following:
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The iid case

In the translation invariant case, many examples can be constructed when

q > p. Let us consider the case where the subtrees along the spine are iid.
Write the (discrete) tree T as T = (TO, T, .. .), where T" is the subtree of

the n-th vertex on the spine. We construct a (p, g)-self-similar tree where

T T', ... are iid. The ingredients are the following:

o (T{")u>0: an iid sequence of trees in T}
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The iid case

In the translation invariant case, many examples can be constructed when

q > p. Let us consider the case where the subtrees along the spine are iid.
Write the (discrete) tree T as T = (TO, T, .. .), where T" is the subtree of

the n-th vertex on the spine. We construct a (p, g)-self-similar tree where

T T', ... are iid. The ingredients are the following:

o (T{")u>0: an iid sequence of trees in T}

@ v a quasi-stationary distribution with eigenvalue g of the
Galton-Watson process (Z,; n > 0) with offspring distribution
po =1— p, pp = p. That is, v satisfies

VneN:P,(Z,€-1Z,>0)=v and P,(4>0)=gq.

Maillard (2015): Characterization of these quasi-stationary distributions.
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The iid case

In the translation invariant case, many examples can be constructed when
q > p. Let us consider the case where the subtrees along the spine are iid.
Write the (discrete) tree T as T = (TO, T, .. .), where T" is the subtree of
the n-th vertex on the spine. We construct a (p, g)-self-similar tree where
T T', ... are iid. The ingredients are the following:

o (T{")u>0: an iid sequence of trees in T}

@ v a quasi-stationary distribution with eigenvalue g of the
Galton-Watson process (Z,; n > 0) with offspring distribution
po =1— p, pp = p. That is, v satisfies

VneN:P,(Z,€-1Z,>0)=v and P,(4>0)=gq.
Maillard (2015): Characterization of these quasi-stationary distributions.

@ A constant ¢ € (0,1].
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The iid case (2)

@ (7¢)n>0: an iid sequence of trees in T}

@ v: a quasi-stationary distribution with eigenvalue g of the GW process with
offspring distribution py =1—p, pp = p.

@ ce (0,1
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The iid case (2)

@ (7¢)n>0: an iid sequence of trees in T}

@ v: a quasi-stationary distribution with eigenvalue g of the GW process with
offspring distribution py =1—p, pp = p.

@ ce (0,1

Construct tree T = (T, T, ...), where T°, T, ... are iid according to the
following law:

TY is the union of a Geo(c)-distributed number of iid trees T/, where

T2 D(T;,N), N~ .

Here, D(Ty, m) is the tree D(7y) cond’ed on having m vertices (plus root).
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The iid case (2)

@ (7¢)n>0: an iid sequence of trees in T}

@ v: a quasi-stationary distribution with eigenvalue g of the GW process with
offspring distribution py =1—p, pp = p.

@ ce (0,1

Construct tree T = (T, T, ...), where T°, T, ... are iid according to the
following law:

TY is the union of a Geo(c)-distributed number of iid trees T/, where

T2 D(T;,N), N~ .

Here, D(Ty, m) is the tree D(7y) cond’ed on having m vertices (plus root).

“Theorem”: This example (basically) covers all cases.
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Proof of Theorem S

One direction is obvious: If 7 is a p-self-similar random R-tree, then by the
commutation relation,

Cp(D(T)) = D(Sp(T)) = D(T),

whence the discrete tree D(7) is p-self-similar as well. For the converse
direction, introduce some more notation:

@ T: The space of locally finite discrete rooted trees (endowed with
topology of local convergence).

e T, C T: The subspace of trees with a finite number of ends.

o +: T — T embedding of a discrete tree into T¢ where each edge gets
edge length 1 and p = length measure.

e M,(X) (for a metric space X): the space of probability measures on X,
endowed with the Prokhorov topology.
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Proof of Theorem S (2)

T: The space of locally finite discrete rooted trees (endowed with topology of
local convergence).

@ T, C T: The subspace of trees with a finite number of ends.

@ +: T — T% embedding of a discrete tree into T¢ where each edge gets unit
length and p = length measure.

M;(X) (for a metric space X): the space of probability measures on X,
endowed with the Prokhorov topology.

Let T be a p-self-similar random discrete tree, i.e. T law Cy(T). Then T € T,
almost surely. We show

@ D(Sy(«(T))) = T as n — oc.
@ The sequence of laws of S (¢(T)) is precompact in M;(T5).
Q@ D : M(T%) — My(T.) is continuous and injective.

This implies the theorem.
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Proof of Theorem S (3)

@ D(S,(¢(T))) — T as n — oo. Construct coupling between the trees T
and D(Spn(L( T))), or rather, suitably truncated versions of them
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Proof of Theorem S (3)

@ D(S,(¢(T))) — T as n — oo. Construct coupling between the trees T
and D(S,(¢(T))), or rather, suitably truncated versions of them

@ The sequence of laws of Sy (¢(T)) is precompact in M;(T5). Derive
precompactness criterion in M;(T%) and M;(T,) (Note: T and T, are
not Polish spaces): For 0 < r < Rand 7 € T, define N, r(T) to be the
number of vertices at distance r of the root having a descendant at
distance R of the root. Then:
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Proof of Theorem S (3)

@ D(S,(¢(T))) — T as n — oo. Construct coupling between the trees T
and D(S,(¢(T))), or rather, suitably truncated versions of them

@ The sequence of laws of Sy (¢(T)) is precompact in M;(T5). Derive
precompactness criterion in M;(T%) and M;(T,) (Note: T and T, are
not Polish spaces): For 0 < r < Rand 7 € T, define N, r(T) to be the
number of vertices at distance r of the root having a descendant at
distance R of the root. Then:

A sequence of random trees T1, 7z, ... € M;(%,) is precompact in M;(T,)
if and only if it is precompact in M;(¥) and for every r > 0 there exist
R = R(r) and ny = ngy(r), such that

the family of random variables (N, g(r)(Tn))ren,n>n(r) 18 tight.

Argue by contradiction using (technical) estimates.

Pascal Maillard On trees invariant under edge contraction 20/25



Proof of Theorem S (3)

Last point to show: D : M;(T%) — M;(T,) is continuous and injective.
Through (non-trivial, but technical) truncation arguments, reduce to showing
that D is continuous and injective on M;(TY). In fact, we have

Theorem T

The map D is a homeomorphism between M;(T%) and D(M;(TY)).
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Proof of Theorem S (3)

Last point to show: D : M;(T%) — M;(T,) is continuous and injective.
Through (non-trivial, but technical) truncation arguments, reduce to showing
that D is continuous and injective on M;(TY). In fact, we have

Theorem T
The map D is a homeomorphism between M;(%%) and D(M,;(%Y)).

In order to prove Theorem T, we will use two other representations of a
random tree T € M;(T}):

Distance matrix: Let 7 = (V, d, p, ;v) a random tree taking values in Qf. Let
Xy = p and X3, X5, . .. be iid according to p. Then the law of

(D7 (i,)))ijen = (d(Xi, Xj))ijen,
also denoted by D, is called the distance matrix distribution of the tree T.

Theorem (Gromov, Greven-Pfaffelhuber-Winter)

The map (7 + Dr) is a homeomorphism between M; (%) and its image.
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Proof of Theorem S (4)

Exchangeable partial order: Let 7 € M;(T}). Define a random partial order
on {1,...,n} as follows:

e Condition the tree D(7) on having n non-root vertices; label them
uniformly at random by 1,..., n.

e The ancestral relation of the resulting tree defines a random partial
order on {L,..., n}.

By design, the sequence of random partial order thus obtained is compatible
and thus extends to a random partial order <i7 on N; this random partial
order is moreover exchangeable by design.

Lemma

The maps D and <i: T +<i7 induce the same topology on M;(%Y).
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Proof of Theorem T

Goal: Show that <i is a homeomorphism between M;(T¢) and its image.
Since M;(TY) is compact, enough to show that it is continuous and injective.
Injectivity of <: Can reconstruct distance matrix Dy from <7

n

. .1
Dr(i,j) = nlggoﬁ Z Yeari, kdirj or karj, kibris
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Proof of Theorem T

Goal: Show that <i is a homeomorphism between M;(T¢) and its image.
Since M;(TY) is compact, enough to show that it is continuous and injective.
Injectivity of <: Can reconstruct distance matrix Dy from <7

n

. .1
Dr(i,j) = nlggoﬁ Z Yeari, kdirj or karj, kibris

Continuity of <i: Enough to show continuity on T! (deterministic trees).
Show in fact that the map 7 ~ (D7, <i7) is continuous on T{. For this,
consider expectation of test functions of the form

n L

f(D,<) = C [T PG ][ 1
i,j=0 I=1

where CER, neN, B € N, L>0and a;, b € {1,...,n}.
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Proof of Theorem T (2)

f(D, < —CHDz] leMb,,
1,j=0

where Ce R, ne N, 8; € N, L >0 and a;,b; € {1,...,n}. Show that
E[f (D, <7)] is continuous in 7. Proof by induction over L.
L = 0: Follows from Gromov/Greven-Pfaffelhuber-Winter.
L —1— L: Can assume that there exists [y € {1,...,L} such that
ap, € {bj:1=1,...,L} (otherwise there exists a cycle
ay <A by Qay, Q-+ < by < ay and thus £ = 0. Let A be the set of those
le{1,...,L} for which the indicator 1o, <, appears in f. Then can prove

that
[ H lal b,

is a polynomial in (D(i,j));?’j:l.

a,<h,a l ¢ A)]

This allows to complete the induction.
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Conclusion

e Theorem S permits to characterize all (p, g)-self-similar trees in terms
of limiting real trees satisfying a simple (multiplicative) self-similarity

property.
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@ Have constructed several classes of examples of such trees.
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Conclusion

e Theorem S permits to characterize all (p, g)-self-similar trees in terms
of limiting real trees satisfying a simple (multiplicative) self-similarity
property.

@ Have constructed several classes of examples of such trees.

@ The limiting real trees have finite length measure. As a consequence, the

(p, q)-self-similar trees are rather elongated, very different from
Galton-Watson trees (for example).
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@ Usually in the literature, operations on trees act on the leaves of the
trees or on whole subtrees, not on single internal vertices.
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Conclusion

e Theorem S permits to characterize all (p, g)-self-similar trees in terms
of limiting real trees satisfying a simple (multiplicative) self-similarity
property.

@ Have constructed several classes of examples of such trees.

@ The limiting real trees have finite length measure. As a consequence, the
(p, q)-self-similar trees are rather elongated, very different from
Galton-Watson trees (for example).

@ Usually in the literature, operations on trees act on the leaves of the
trees or on whole subtrees, not on single internal vertices.

@ Theorem T gives another characterization of the GHP topology on the
space Tt

@ Proof of Theorem T is yet another example of the use of exchangeability
in studying continuum limits of discrete structures.
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